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Abstract.-In a preceding note (these PROCEEDINGS, 63, 275 (1969)) singly
and doubly stochastic integrals were defined. Here correspondingly generalized
stochastic differential equations are studied. For constructing stochastic
models of physical processes with random noises, by proper selection of the
doubly stochastic terms, we remove the apparent discordances between classical
and stochastic models.

1. Substitution; Differentiation of Composite Functions.-In this note we
shall often write equations involving differentials. We do not actually define
differentials; the equations with differentials are merely abbreviations for their
integrated forms. Thus a process x is said to satisfy

dxa = fa dt + E pga dzP + Epah p,,a dzP dzo (1.1)

if it satisfies, for a < t < b,
r r

xa(t) = xa(a) + E fjg a dzP (s) + E fahP a dzP (s)dz (s). (1.2)
p=1 p, =l

In classical calculus, expressions involving differentials are usually linearized
forms of expressions involving increments. For the stochastic analogues we must
also include terms of second degree. We thus have the memory device: Treat
differentials dz' as increments, then discard all terms with more than two dz-
factors and also all those terms with two dz-factors whose doubly stochastic in-
tegrals are known to vanish. Thus, if all zP are Lipschitzian, we come back to
the familiar linearization of ordinary calculus. Of course the formulas thus ob-
tained must be shown to be valid under suitable continuity conditions.
For example, if Ffag a h a are processes with property (II) (cf. ref. 4 (3.2))

and Xa (a = 1, 2) satisfies (1.1), the memory device gives formulas for Fdxl and
Fdx1dx2, the latter being

F(t)dx1(t)dx2(t) = E p,(t)gP1(t)ga2(t)dZP(t)dZ-(t) (1.3)
that are in fact assertions about stochastic integrals. We can prove these
formulas, but only under the extra hypothesis that for a < s < t < b and p in
1,. . ,

lim ess. sup. E([zP (t) -zP (8)]4158)/(t - s) = 0 (1.4)
t-.s=0

uniformly on [a, b].
For another example we have a generalization of the Ito differentiation

formula :5
THEOREM 1.1. Let F = (F(x,t): xeRn, te[a,b]) be continuous together with

F1,Fxi and FZiZj (ij = 1,. . . ,n). Let zl,. . . ,zP satisfy (2.1) of reference 4 and also,
fora s<t<bandpeIl,...,r},
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lim ess. sup. E([zP (t) -z (8)]C fY)/(t - S)2 = 0 (1.5)
t-&--iO

uniformly on [a,b] for c = 6,8. Let xIJfgIhp,(i, = 1,... ,n;p,a =1,... ,r) be
processes satisfying (1.1) and having property (II) (cf. ref. 4, (3.2)). Then for t in
[a,b]

n
dF(x(t),t) = [Ft + E Fxif% (t)]dt

i=1
n r

+ E E Fzi go (t)dzP
i=l p=l

n r

+ zEE Fxixipa(t)pu= 1
n r

+ 1/2E E FxijgpI(t)g!(t)} dz" dzO', (1.6)
ij=1 pW=l

where Ft, etc., are evaluated at (x(t),t).
The proofs of these statements are simple in plan but tedious in execution.

Given II, in Theorem 1.1 we expand the differences of F(x(t),t) at successive t1 by
Taylor's theorem and approximate the A> by Riemann sums deduced from
(1.2). The result consists of the terms needed for (1.6), together with a multi-
tude of unwanted terms with too many factprs ,jzP. By judicious grouping and
occasional reference to Lemma 3.1 of reference 4, it can be shown that the sum
of the unwanted terms tends to 0 with mesh II.

2. Differential and Functional Equations.--In reference 2 an existence theorem
was proved for solutions of a class of stochastic functional equations. With only
trivial changes, this theorem extends to equations containing both singly and
doubly stochastic terms. For brevity, we state the result only for stochastic
differential equations:
THEOREM 2.1. Let (2.1) of reference 4 be satisfied, and let xo be 5Ya-measurable

and have finite second moments. Let ft,g,',h,,,' (i = 1,. . . ,n;p, = 1,... ,r) be
functions defined and Lipschitzian on RI [a,b]. Then the equations

dxi = fI(x(t),t)dt + Egp'(x(t),t)dzP
p=l
r

+ 5 h.,,' (x(t),t)dzPdz' (i = 1,.. .,n) (2.1)
P, 0 = 1

with initial condition xi(a) = xol have a solution; and if x1,x2 are solutions, then
for each t we have xi(t) = x2(t) a.s.
From reference 2 we can also adapt the method of approximating solutions of

(2.1) by "Cauchy polygons." Let II be a partition of [a,b], with division points
tl,. . .,tm+1. We define x11(a) = x(a), and successively

Xn' (t,+1) = x1a' (t4) + f: (X11(t,),t)At +~~~~~~~~~r
5 gP{((xu (tj1),t1)AZP + E h ,,/(xn(tj),t1)AlzPqAz'; (2.2)
p=1 p,T=I

inside each [tj,tj+,] we define xnl(t) by linear interpolation.
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3. Stochastic Models.-Let us assume that a system subjected to Lipschitzian
disturbances is known by the theory governing such systems to satisfy

r
dx' = fP(x(t),t)dt + Z gp(x(t),t)dzp. (3.1)

Then for Lipschitzian disturbances it is equally true that it satisfies (2.1) with
any hp.,i, since the doubly stochastic integral of the last term is then 0. But this
equivalence of all systems (2.1) fails when we allow disturbances satisfying (2.1)
of reference 4, and for a stochastic model permitting such disturbances we must
select one system. We can avoid the confusion associated with the choice
hp ai = 0 by using the following rule.

(3.2) Selection principle: When a scientific theory asserts that a system
affected by Lipschitzian disturbances z',. . .,zr satisfies (3.1), then in order to
form a stochastic model adequate for use with any disturbances satisfying (2.1)
of reference 4 we replace (3.1) by the equation (2.1) (equivalent to (3.1) for Lip-
schitzian disturbances) in which we define

n
hpgi (xt) = (1/2)Z g,1,xh (X,t)ga/' (t) (i = 1 ... ,n). (3.3)

It should be observed that we are not adding a "correction term" to the equa-
tion (3.1) valid for Lipschitzian disturbances. Rather, we are regarding (2.1)
with notation (3.3) as being the equation of the system for all disturbances z"
satisfying (2.1) of reference 4, and are merely refraining from making in all cases
the simplification to (3.1) which is valid in the special case of Lipschitzian dis-
turbances, but is not valid in other cases.
The justification of the selection principle must consist of an exhibition of

systems in which troubles are present when (3.1) is used and absent when (2.1)
(with (3.3)) is used. For reasons of space we present only two examples, one
banal.

If a system satisfies
dxl = 2x2dz, dx2 = ldz (x1(a) = x2(a) = 0) (3.4)

with Lipschitzian disturbance z(t), it is easy to see that

xl(b) = z(b)2 - z(a)2 (b > a). (3.5)
This fails if z is a Wiener process (ref. 1, p. 444). But if we use the selection
principle (3.2), we replace (3.4) by

dx1 = 2x'dz + (dz)2,dx2 = dz (xl(a) = x2(a) = 0), (3.6)
which is equivalent to (3.4) when z is Lipschitzian. The solution of this by
Cauchy polygons (2.2) is trivially easy; we obtain (3.5) as the solution no
matter what the disturbance z may be.

Before presenting the next example we note that (2.1) can be simplified in
appearance by introducing functions Zr+1 and x1+', both identically t, and cor-
responding new coefficients, such as g,+,' = f'. The new equation has no dt
term. Applying the selection principle to the new equation apparently yields a
different result; doubly stochastic terms with dzr+l-factors will be present.
But these may be discarded, since their doubly stochastic integrals vanish.
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If the z" are independent Wiener processes, equations (3.1) are the Ito-Nisio
equation. Wong and Zakai6 suggest that another approach to stochastic dif-
ferential equations is to replace the zP by continuous approximations z1ip that
coincide with the zP at the division points of a partition II and are linear on the
intervals of II, solve the resulting ordinary equations, and then let mesh II tend
to 0. As they say, experiments correspond to such an approach. They proved
for n = 1, and conjectured for all n, that the solutions corresponding to the z"
would converge to the solutions, not of the Ito-Nisio equation with which we
started, but of another equation. In view of Examples 1 and 3 of reference 4
this other equation is (2.1) with (3.3), simplified in appearance because the zP are
Wiener processes. Thus use of our selection principle takes us by another path
to the goal of Wong and Zakai.
However, an even closer relationship exists. If II divides [ab] into equal

subintervals, all zP except those in a set of arbitrarily small measure satisfy a
Holder condition

IZP(t) -zP(s)| < K(t - 8).4
so for these z], satisfies a Lipschitz condition of constant K(mesh II)-.6. If we
now compare the Cauchy polygon for (2.1) with (3.3), having vertices at the
division points of II, with the solution of (3.1) having z11p in place of zP, we find
that the agreement is quite good, because (3.3) yields essentially the same im-
provement in truncation error as the Runge-Kutta method does. It can in fact
be shown that the distance between them, in the metric of convergence in prob-
ability, tends to zero. Hence, except that we have used subdivisions of [a,b]
into equal parts and replaced L2-convergence by convergence in measure, we
have verified the conjecture of Wong and Zakai.

4. Remarks.-(1) By means of Corollary 4.1 of reference 4 we can extend the
stochastic integrals (as in ref. 5) to integrands f(tw) separable and F.-measurable
and a.s. square-summable over [a,b]. In fact, for the doubly stochastic integral
this holds with "square" omitted.

(2) As indicated in reference 3, it is highly desirable to use that version of the
integral or solution that coincides with the pointwise limit at those X for which
the zP(.,w) are Lipschitzian. But in the present setting this is the natural thing
to do.

(3) In reference 3 we studied continuity of solutions, to be sure that small
causes such as rounding did not produce excessive effects. The same tech-
niques yield the same estimates here, but regrettably no better ones.
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